Parity, eulerian subgraphs and the Tutte polynomial

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the tutte polynomial of benzenoid chains

The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.

متن کامل

The Tutte polynomial

This is a close approximation to the content of my lecture. After a brief survey of well known properties, I present some new interpretations relating to random graphs, lattice point enumeration, and chip firing games. I then examine complexity issues and concentrate in particular, on the existence of randomized approximation schemes. © 1999 John Wiley & Sons, Inc. Random Struct. Alg., 15, 210–...

متن کامل

Fourientations and the Tutte polynomial

for α, γ ∈ {0, 1, 2} and β , δ ∈ {0, 1}. We introduce an intersection lattice of 64 cut–cycle fourientation classes enumerated by generalized Tutte polynomial evaluations of this form. We prove these enumerations using a single deletion–contraction argument and classify axiomatically the set of fourientation classes to which our deletion–contraction argument applies. This work unifies and exten...

متن کامل

Chip-Firing Game and a Partial Tutte Polynomial for Eulerian Digraphs

The Chip-firing game is a discrete dynamical system played on a graph, in which chips move along edges according to a simple local rule. Properties of the underlying graph are of course useful to the understanding of the game, but since a conjecture of Biggs that was proved by Merino López, we also know that the study of the Chip-firing game can give insights on the graph. In particular, a stro...

متن کامل

Tutte Polynomial, Subgraphs, Orientations and Sandpile Model: New Connections via Embeddings

For any graph G with n edges, the spanning subgraphs and the orientations of G are both counted by the evaluation TG(2, 2) = 2 n of its Tutte polynomial. We define a bijection Φ between spanning subgraphs and orientations and explore its enumerative consequences regarding the Tutte polynomial. The bijection Φ is closely related to a recent characterization of the Tutte polynomial relying on a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2008

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2007.09.006